Welcome to

Conference

January 28–30, 2025 Santa Clara Convention Center Ехро

January 29–30, 2025

JAN. 28–30, 2025

#DesignCon

SPEAKERS

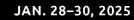
Zhiping Yang CEO, PCB Automation Inc. zhipingyang@pcbauto.ai

Zhiping Yang is the CEO of PCB Automation Inc. (<u>https://pcbauto.ai</u>) and an adjunct professor at Missouri S&T EMC laboratory. He worked in Waymo, Google, Apple, Cisco, and Nuova systems on automotive, consumer, and datacenter products. His research interests include signal integrity and power integrity methodology development for Die/Package/Board co-design, high-speed optical module, various high-speed cabling solutions, high-speed DRAM/storage technology, and high-speed serial signaling technology. He has published more than 70 research papers and 20 patents. His research and patents have been applied in Apple iPhone 5S/6/6S, Cisco UCS, Cisco Nexus 6K/4K/3K, and Cisco Cat6K products. He is actively involved with the IBIS Open Forum as a BoD member and officer. He is an IEEE Fellow and served the Technical Advisory Committee leadership roles in IEEE EMC society. He obtained his Ph.D. from University of Missouri-Rolla and his B.S. and M.S. from Tsinghua University, Beijing.

Ravi NarayaSwami, Design Engineering Group Director, Cadence rswami@cadence.com

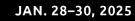
Ravi NarayanaSwami is a Design Group Director in the Cadence Silicon Solutions Group with around 25 years of semiconductor development and systems engineering experience in Silicon Valley. His team's responsibilities include post-silicon tapeout activities to product validation related to high-speed SerDes and UCIe[™] subsystem IPs. He holds an M.S.E.E from the Florida Institute of Technology.

#DesignCon



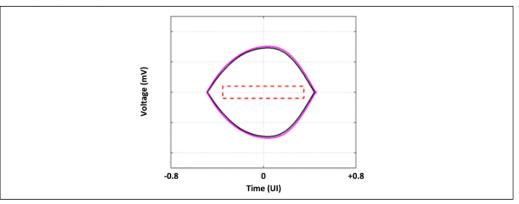
UCle Overview

#Des



Outline

- UCle[™] Channel Compliance Overview
 - 。 Eye Diagram Requirement
 - Voltage Transfer Function (VTF)



Channel Spec: Eye Diagram Requirement\

Table 5-10. Eye requirements

Data Rate (GT/s)	Eye Height (mV)	Eye width (UI)
4, 8, 12, 16 ^{a c}	40	0.75
24, 32 ^{a b c}	40	0.65

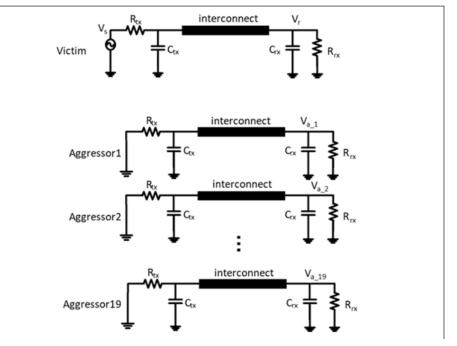
a. Rectangular mask.

b. With equalization enabled.

c. Based on minimum Tx swing specification.

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

#DesignCon



(informa markets

Channel Spec: Voltage Transfer Function

Figure 5-17. Circuit for VTF calculation


Voltage Transfer Function (VTF) based metrics are used to define insertion loss and crosstalk. VTF metrics incorporate both resistive and capacitive components of TX and RX terminations. Figure 5-17 shows the circuit diagram for VTF calculations.

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

#DesignCon

Channel Spec: VTF Loss

VTF loss is defined as the ratio of the Receiver voltage and the Source voltage, as shown in Equation 5-1 and Equation 5-2.

Equation 5-1.

$$L(f) = 20\log 10 \left| \frac{V_r(f)}{V_s(f)} \right|$$

Equation 5-2.

$$L(0) = 20\log 10 \left(\frac{R_{rx}}{R_{tx} + R_{channel} + R_{rx}}\right)$$

L(f) is the frequency dependent loss and L(0) is the DC loss. For unterminated channel, L(0) is effectively 0.

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

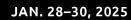
#DesignCon

Channel Spec: VTF Crosstalk

VTF crosstalk is defined as the power sum of the ratios of the aggressor Receiver voltage to the source voltage. 19 aggressors are included in the calculation. Based on crosstalk reciprocity, VTF crosstalk can be expressed as shown in Equation 5-3.

Equation 5-3.

$$XT(f) = 10\log 10 \left(\sum_{i=1}^{19} \left| \frac{V_{ai}(f)}{V_{s}(f)} \right|^{2} \right)$$


#DesignCon

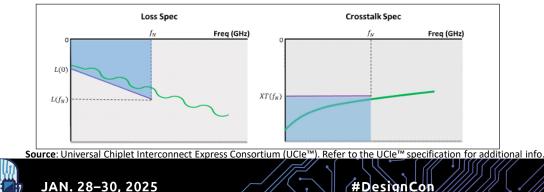
(informa markets

8

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

Channel Spec: VTF for Advanced Package

Table 5-11. Channel Characteristics


Data Rate	4-16 GT/s	24, 32 GT/s
VTF Loss (dB)	$L(f_N) > -3$	L(f _N) > -5
VTF Crosstalk (dB) ^a	$XT(f_{\text{N}})$ < 1.5 L(f_{\text{N}}) - 21.5 and $XT(f_{\text{N}})$ < -23	$XT(f_{\text{N}})$ < 1.5 L(f_{\text{N}}) - 19 and $XT(f_{\text{N}})$ < -24

a. Based on Voltage Transfer Function Method (Tx: 25 ohm / 0.25 pF; Rx: 0.2 pF).

 f_N is the Nyquist frequency. The equations in the table form a segmented line in the loss-crosstalk coordinate plane, defining the pass/fail region.

Loss and crosstalk are specified by a mask defined by the $L(f_N)$ and $XT(f_N)$ at Nyquist frequency. It is a linear mask from DC to f_N for loss and flat mask for crosstalk, illustrated by Figure 5-18. Loss from DC to f_N needs to be above the spec line. Crosstalk from DC to f_N needs to be below the spec line. The green line in Figure 5-18 is a representative passing signal.

(informa markets

Channel Spec: VTF for Standard Package

5.7.3 Standard Package

Interconnect channel should be designed with 50 ohm characteristic impedance. Insertion loss and crosstalk for requirement at Nyquist frequency with Receiver termination is defined in Table 5-18.

Data Rate	4, 8 GT/s	12, 16 GT/s	24, 32 GT/s
VTF Loss (dB) ^{a b c}	L(0) > -4.5	L(0) > -4.5	L(0) > -4.5
	L(f _N) > -7.5	L(f _N) > -6.5	$L(f_N) > -7.5$
VTF Crosstalk (dB)	$XT(f_N) < 3 * L(f_N) - 11.5$	$XT(f_N) < 3 * L(f_N) - 11.5$	$XT(f_N) < 2.5 * L(f_N) - 10$
	and $XT(f_N) < -25$	and $XT(f_N) < -25$	and $XT(f_N) < -26$

Table 5-18. IL and Crosstalk for Standard Package: With Receiver Termination Enabled

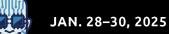
a. Voltage Transfer Function for 4 GT/s and 8 GT/s (Tx: 30 ohm / 0.3pF; Rx: 50 ohm / 0.3pF).

b. Voltage Transfer Function for 12 GT/s and 16 GT/s (Tx: 30 ohm / 0.2pF; Rx: 50 ohm / 0.2pF).

c. Voltage Transfer Function for 24 GT/s and 32 GT/s (Tx: 30 ohm / 0.125pF; Rx: 50 ohm / 0.125pF).

IL and crosstalk for requirement at Nyquist frequency without Receiver termination is defined by Table 5-19. Loss and crosstalk specifications between DC and Nyquist f_N follow the same methodology defined in Section 5.7.2.1.

Table 5-19. IL and Crosstalk for Standard Package: No Rx Termination


Data Rate	4-12 GT/s	16 GT/s
VTF Loss (dB) ^{a b}	L(f _N) > -1.25	L(f _N) > -1.15
VTF Crosstalk (dB)	$\rm XT(f_N)$ < 7 * $\rm L(f_N)$ - 12.5 and $\rm XT(f_N)$ < -15	$XT(f_N) < 4 \ {}^{*}L(f_N) \ {}^{-}$ 13.5 and $XT(f_N) \ {}^{<} -17$

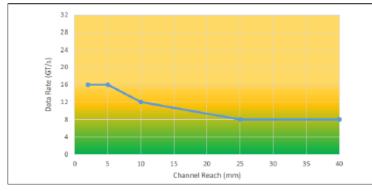
a. Voltage Transfer Function for 4 GT/s and 8 GT/s (Tx: 30 ohm / 0.3pF; Rx: 0.2 pF).

b. Voltage Transfer Function for 12 GT/s and 16 GT/s (Tx: 30 ohm / 0.2pF; Rx: 0.2 pF).

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

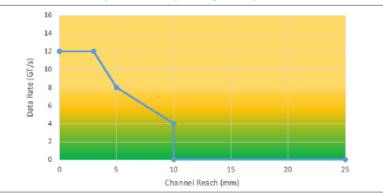
#DesignCon

10


(informa markets

UCle Routing/Signal Exit Order Requirement

Maximum Channel reach for unterminated Receiver (TX swing = 0.85V)


Data Rate (GT/s)	Channel Reach (mm)
16	5
12	10
8 and below	All supported Lengths

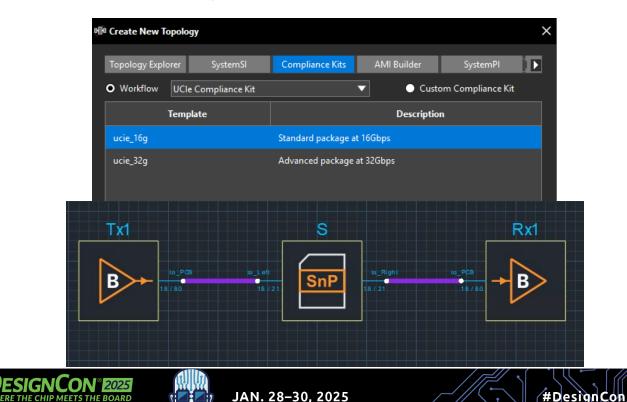
Receiver termination map for Table 5-7 (TX Swing = 0.85 V)

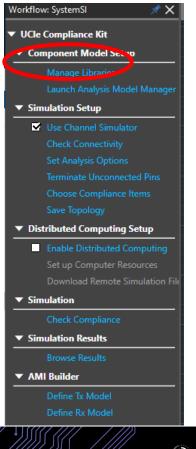

Receiver Termination Map for Table 5-6 (Tx Swing = 0.4 V)

#DesignCon

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

Compliance Kit

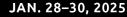

#DesignCon


informa markets

UCle Interface Added in Compliance Kits

Introduced new compliance kit for UCIe[™] interface

Information Classification: General



Details of the New UCle Kit

- UCle[™] Spec v1.1
- Templates for data rates of 16 and 32Gbps
- Generic IBIS-AMI models
- Generic UCIe reference channel
- VTF calculations
- Compliance check report

Compliance Items

- As required in UCIe[™] Spec
 - Eye mask
 - VTF

Analysis Options

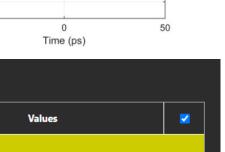
Circuit Simulation Advanced Pack Standard Packa Terminations R(tx) 30

> Resolution # of Frequency P

			-200	
Channel Simulation VTF Simulation IO) Models and	l Stimulus	-50	0 Time (ps)
:kage cage ✓ With Rx Termination	Choo	se Compliance Items		
ohm C(tx) 0.2 pF	No.	Parameter		Values
Points 128	Eye Dia	gram Requirement		
	1	Eye Mask	Eye H	Height = 40mV, Eye Width = 0.75UI
	Voltage	Transfer Functions		
	2	VTF Loss		L(0) > -4.5 and L(f _N) > -6.5
	3	VTF Crosstalk	XT(f _l	_N) < 3*L(f _N) - 11.5 and XT(f _N) < -25

JAN. 28-30, 2025

= 0.75UI


200

100

-100

Voltage (mV)

#DesignCon

~

✓

Compliance Checking

 Spec-based measurements

UCIe Compliance Report

Generated by Topology Workbench, Cadence Design Systems Inc., Aug 14, 2024

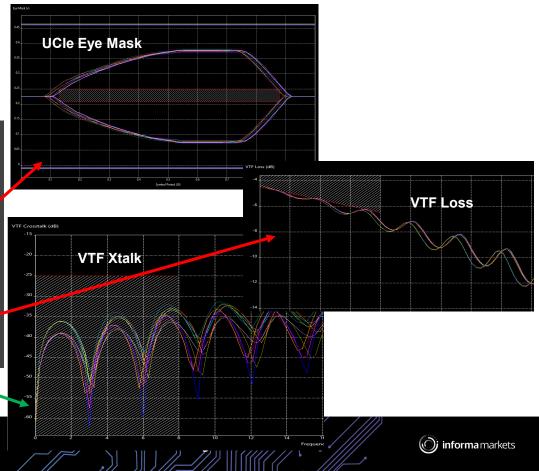
Useful Links

Cadence website: <u>http://www.cadence.com</u>

General Information

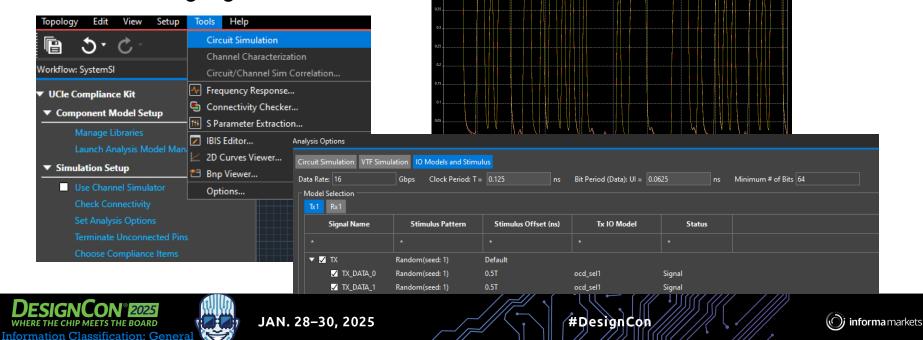
- Project File: new_test.topx
- Circuit Simulator: SPDSIM

Summary of Results

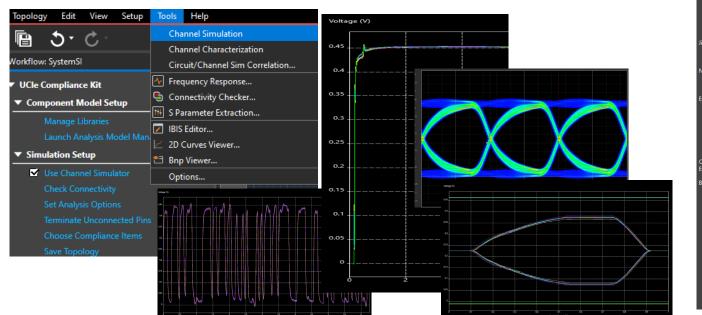

This report shows the results of the compliance testing using Cadence TopXp. The channel simulated violates one or more compliance requirements.

Eye Diagram Requirement

WHERE THE CHIP MEETS THE BOARD Information Classification: General


Item	Value	Simulation Results	Pass/Fail
Eye Mask	Eye Height = 40mV, Eye Width = 0.75UI	Eye Mask	
Voltage Transfer Functions	5 		
Item	Value	Simulation Results	Pass/Fail
Item			
VTF Loss	L(0) > -4.5 and L(f _N) > -6.5		

JAN. 28-30, 2025

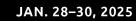

Running Transient Simulation (Circuit Simulation)

- You can directly run circuit simulation in the UCIe[™] Compliance Kit flow
 - Checking signal and crosstalk

Running Channel Simulation

 You can run full channel simulation in the UCIe[™] Compliance Kit flow

Channel Report	
hu Nov 28 17:30:30 2024	
eneral:	
Number of Eye Bits Ignore Bits = 8 Channel Coding Primary Driver = Data Pattern =	= Time Domain 16 Gbps = 97ps = 1332 396 5 K1_TX_DATA_0 random = 17 = C<\Users\zhenm\OneDrive - Cadence Design = Ecvlosers\zhenm\OneDrive - Cadence Design = Even Mode Ramp Characterization
tter Inputs:	
Random Jitter =	: 1%
loise Inputs:	
Random Noise	= 1 mV
ye Contour Measurements:	
Eye Height = Eye Height Measured at Eye Jitter = 0.0. Eye Jitter Measured at Eye Norm Jitter and Noise Channel Operating Margi	03 UI = 225 mV : (NJN) = 0.49
hannel Operating Margin (C ye Density Signal to Noise Ra	OM) at BER 1e-16 = 14.11 dB tio (SNR) = 105.30
ER Measurements:	
-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5	Eye Width(UI) 0.78 0.79 0.80 0.80 0.81 0.82 0.82 0.82 0.83 0.84 0.85 0.84 0.85 0.84 0.85 0.86 0.87 0.88 0.88 0.88



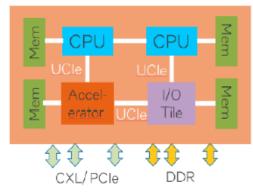
JAN. 28-30, 2025

Case Study

////////#

informa markets

UCle Chiplets and Packaging

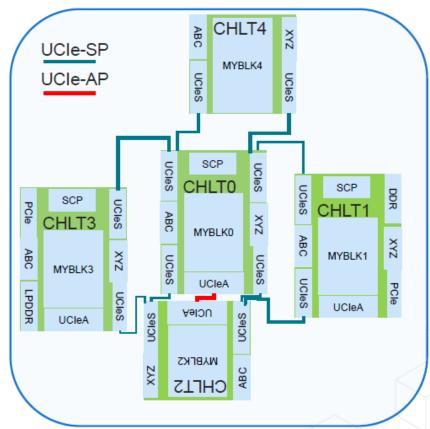

UCle–Chiplets Integration Challenges

- Complex Die-2-Die routes (Signal, Power)
- Maintain Signal Exit orders at the beach front (die edge), while maintaining strict skew matching (lane-2-lane, lane-2-forwarded clocks,...)
- Meet SI /PI budget for channel to ensure overall End-2-End (Interconnected die) performance requirements.
- Mix of AP, SP PHYs, Term/Unterminated routes, varying die-2-die spacing, Performance in High/Low Swing modes.
- VTF based channel analysis.

Need for UCle-Centric Packaging Solutions

- A toolkit for Automating Package designs for UCIe based chiplet integration.

A Package Composed of CPU Dies, Accelerator Die(s), and I/O Tile Die Connected through UCIe



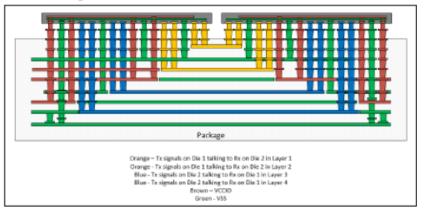
JAN. 28–30, 2025

#DesignCon

Chiplet Package Design – Die Placement/Routing

- Placement
 - Multiple chiplet instantiations UCIe-SP, UCIe-AP
 - Orientation and alignments
- Import models
 - Physical
 - IBIS
 - Rdie, Cdie, .pdn, current die model (.cdm)
- Choose channel (from PDK library)
 - Organic
 - CoWoS-S/R/L
 - Bridge interposer
 - ...

JAN. 28–30, 2025


#DesignCon

UCle Routing/Signal Exit Order Requirements

Figure 5-41. Standard Package x16 interface: Signal exit order

Layer 1	TX	0	1	2	з	trk	vid	12	13	14	15	15	14	13	12	vld	trk	3	2	1	0	Rx
Layer 2	Module	4	5	6	7	ckp	den	8	0	10	11	11	10	0	8	ckn	dep	7	6	5	4	Module
Sideband		t	datas	b			1	xckst							xdest				D	datas	b	

Figure 5-44. Standard Package cross section for stacked module

Figure 5-43. Standard Package x32 interface: Signal exit routing

Layer 1	Tx	0	1	2	3	trk	vid	12	13	14	15	15	14	13	12	vid	trk	3	2	1	0	Rx
Layer 2	Module 1	4	5	6	7	dkp	din	8	9	10	11	11	10	9	8	den	dep	7	6	5	-4	Module
Layer2 Layer3 Layer4	Rx	0	1	2	3	trk	vid	12	13	14	15	15	14	13	12	vid	trk	3	2	1	0	Τx
Layer 4	Module 2	4	5	6	7	dkp	din	8	9	10	11	11	10	9	8	dim	dkp	7	6	5	4	Module
Sideband		m1	txdat	asb	m2	nidat	asb	mit	icksb	m2n	tcksb	m2b	cdesb	m1rx	dab	m2	txdat	asb	_m1	nedati	asb	Sidebar

Source: Universal Chiplet Interconnect Express Consortium (UCle™). Refer to the UCle™ specification for additional info.

#DesignCon

UCle AP Interposer Design Requirements

Figure 5-23 shows the signal exit order for the 10-column x64 Advanced Package bump map.

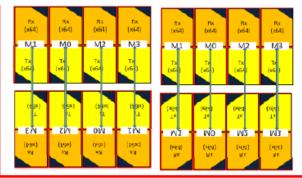
	Left to Right																
		5/4/4/00	bidata0	tolatal	todata2	todata3	bdata4	bidataS	tolatal	trata7	todat a8	bdata9	txdata30	b detail	todatal2	Didata D	C)
Tx	Cont	tolata14	todata15	todata15	bdata17	todata18	todata 19	tedata20	todata21	tadata22	bdata13	txdata14	txdata25	b data25	todata27	bdata28	Cor
Braikout	Conti	tolat29	todata30	tida alt	tola A01	tx880	tukn	tukp	M/A	tivid	twidRD	todauA02	todat #32	B data 38	todata34	bdata35	Cor
	Cont2	todata36	todata37	Esdata38	bdata39	todata40	todata41	txdata42	todata43	tadata44	bdata45	tx:8/1246	todat #47	to data48	todata48	bdata50	Cor
	ContB	tolati51	todata 92	todata63	bdata54	todata65	todata 96	todata57	todata58	todata59	Detailed	0.04061	wdat #62	to data 69	to data RDB		
	Left to Hight																
		rodata ROS	m data63	rodata62	odataśi	rxdata60	rodata 99	rxdata58	ndata57	radata56	odata55	ndata64	rodatu53	redata52	rod#451	ordata50	Ca
Rx	Cont	relate/9	m data 48	radata47	odata46	rodata45	rodata44	redata43	ndata/2	radata41	odata40	ndata39	redata38	redata37	rodata36	ordata35	Con
Breakout	Conti	relate34	m data33	rodata32	ridataR02	ov/d0	on M	rxtrk	radip	ocin	nukRD	rodataR01	red:sta31	redata30	rodata29	sida ta 28	Con
	Cont2	redat/27	mdata26	rodata25	Ndita34	rodata13	redata 32	redata21	ndata20	radata19	odata18	ndata17	redata16	rodata15	rodata14	ordata13	Con
	ContB	redatat2	redata11	rodata10	redata9	rodat a8	odata7	ndata6	codat als	rolats4	redata3	ordata2	rodatat	reduita 0	metata 800		

Figure 5-23. 10-column x64 Advanced Package Bump map: Signal exit order

 UCIe standard allocates 25% UI of jitter to channel related degradation (loss+xtalk)

- After UCIe data channels are designed on the interposer, the resulting design should be verified with circuit level simulations
- With an ideal driver and receiver circuit, using the interposer channel, the eye should have ≥ 75% UI horizontal opening and ≥ 40mV vertical height
- Example: at 16Gbps, channel related jitter (xtalk+loss) should be ≤ 15.6ps

- UCIe is sensitive to supply noise, recommend keeping the UCIe PHY supplies separate than the SoC supplies
- The AP UCIe PHY was designed with the assumption that there is a total of 50 mVpp supply noise, where 20-25mVpp of that being allocated to the IP.
- Using the die model for the IP in conjunction with the extracted interposer and package s-parameter models, the target should be that the supply noise be less than 25mVpp. Higher noise values will need to be evaluated on a case-by-case basis.
- Additionally, the IR drop across the interposer power routings should be minimized. We should target this drop to be less than 5mV, but there is some flexibility this depending on the domain



#DesignCon

23

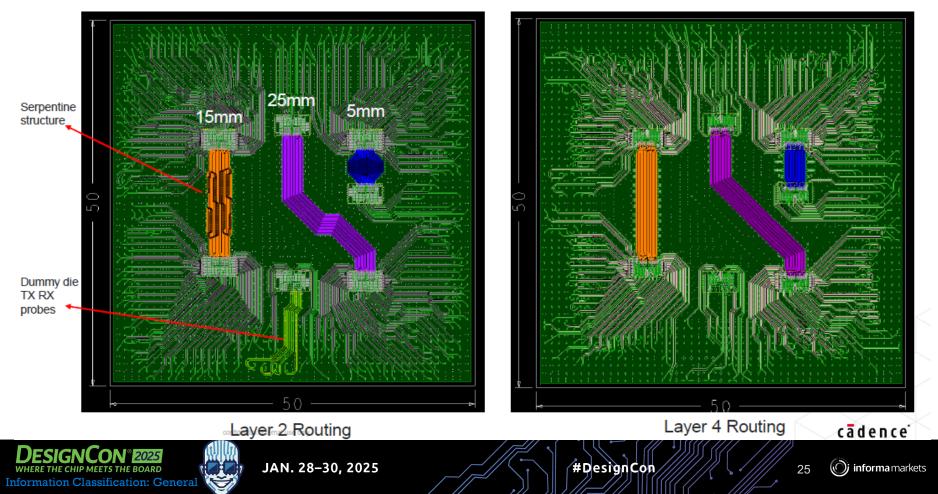
informa markets

GUI-Based Link Connectivity

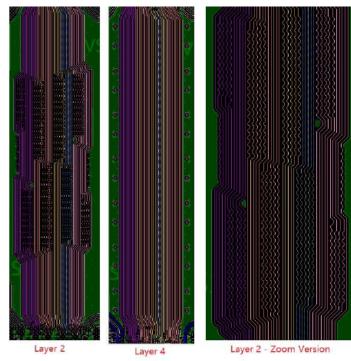
- Fixed signal connectivity between Die modules [link_AP.v, link_sp.v].
- Connect the Dies/ Links through Verilog File Placement in GUI. Validated Connectivity by Construction.
- Die placements / orientation (Die Rotate, Mirrored Die Rotate, Multi Modules)
- · Complete non-Die2-Die , Power Rail connectivity.

Die 0	Link SP	Die 1	Die 0	Link SP	Die 1
txclkp	-	rxclkp	rxclkp		txclkp
txclkn	-	rxclkn	rxclkn	•	txclkn
txdata0	-	rxdata0	rxdata0		txdata0
txdata1	-	rxdata1	rxdata1	-	txdata1
txdata2	-	rxdata2	rxdata2	•	txdata2
txdata3	-	rxdata3	rxdata3		txdata3
txdata4	-	rxdata4	rxdata4		txdata4
txdata5	•	rxdata5	rxdata5	-	txdata5
txdata6	1	rxdata6	rxdata6	-	txdata6
txdata7	•	rxdata7	rxdata7	•	txdata7
txdata8	-	rxdata8	rxdata8	-	txdata8
txdata9		rxdata9	rxdata9	•	txdata9
txdata10	-	rxdata10	rxdata10		txdata10
txdata11		rxdata11	rxdata11		txdata11
txdata12	-	rxdata12	rxdata12	-	txdata12
txdata13	•	rxdata13	rxdata13		txdata13
txdata14		rxdata14	rxdata14		txdata14
txdata15	1	rxdata15	rxdata15	-	txdata15
txvld	•	rxvld	rxvld		txvld
txtrk	1	rxtrk	rxtrk	•	txtrk
txdatasb		rxdatasb	rxdatasb		txdatasb
txclksb		rxclksb	rxclksb		txclksb

	Die 0	Link AP	Die 1	Die 0	Link AP	Die 1				
	txclkp		rxclkp	rxclkp	•	txclkp				
	txclkn		rxclkn	rxclkn	•	txclkn				
	txdata0		rxdata0	rxdata0	•	txdata0				
	txdata1	•	rxdata1	rxdata1	•	txdata1				
	txdata2		rxdata2	rxdata2	•	txdata2				
	txdata3		rxdata3	rxdata3	4	txdata3				
	txdata4		rxdata4	rxdata4	•	txdata4				
	txdata5		rxdata5	rxdata5	•	txdata5				
					•					
					•					
	txdata58		rxdata58	txdata58		rxdata58				
	txdata59		rxdata59	txdata59	•	rxdata59				
	txdata60		rxdata60	txdata60	-	rxdata60				
	txdata61		rxdata61	txdata61	•	rxdata61				
	txdata62		rxdata62	txdata62		rxdata62				
	txdata63		rxdata63	txdata63		rxdata63				
	txvld		rxvld	rxvld	•	txvld				
	txtrk		rxtrk	rxtrk		txtrk				
	txdataRD0		rxdataRD0	rxdataRD0		txdataRD0				
	txdataRD1		rxdataRD1	rxdataRD1		txdataRD1				
	txdataRD2		rxdataRD2	rxdataRD2		txdataRD2				
	txdataRD3		rxdataRD3	rxdataRD3	←	txdataRD3				
	txvldRD		rxvIdRD	rxvldRD	←	txvldRD				
	txtrkRD		rtrkRD	rtrkRD	-	txtrkRD				
	txdatasb		rxdatasb	rxdatasb	— —	txdatasb				
	txclksb		rxclksb	rxclksb	•	txclksb				
	txdatasbRD		rxdatasbRD	rxdatasbRI	D	txdatasbRD				
	txclksbRD -		rxclksbRD	rxclksbRD		txclksbRD				



JAN. 28–30, 2025

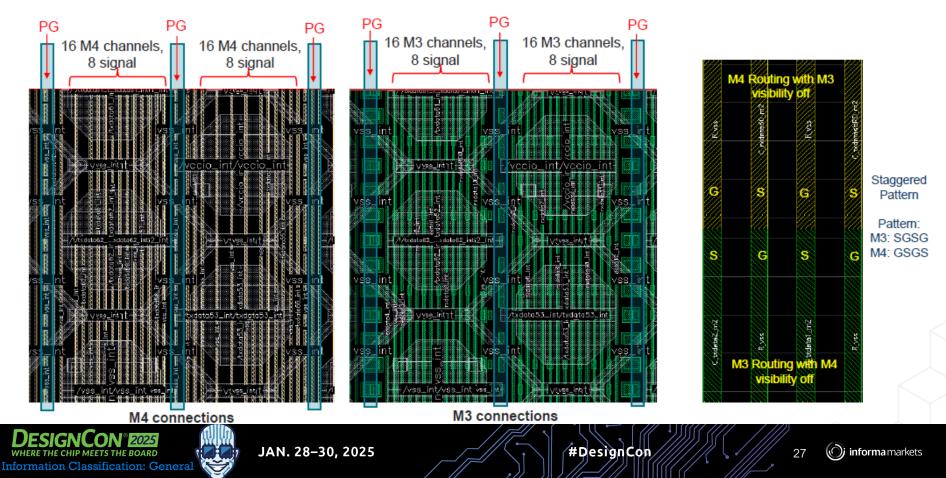

#DesignCon

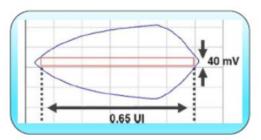
Blizzard N7 SP – Package Overview

SP - Routing (16mm average) Samples and Matching Lane Skews

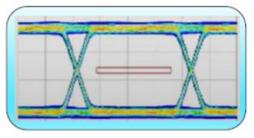
			(mm)	(ps)	delta	
1	Layer 6	RXCKSB_M0_AB	16.83	89.04	0.1	
2	Layer o	RXDATASB_M0_AB	16.81	88.94	0.1	
3	Layer 4	RXDATA10_M0_AB	16.27	84.34	0.38	3.84
4		RXDATA6_M0_AB	16.25	84.24		
5		RXDATA5_M0_AB	16.24	84.2		
6		RXDATA11_M0_AB	16.24	84.19		
7		RXDATA9_M0_AB	16.23	84.15		
8		RXDATA7_M0_AB	16.23	84.12		
9		RXDATA4_M0_AB	16.22	84.07		
10		RXDATA8_M0_AB	16.22	84.06		
11		RXCKN_M0_AB	16.20	83.96		
12		RXCKP_M0_AB	16.20	83.96		
13	Layer 2	RXDATA0_M0_AB	15.98	80.63	0.13	
14		RXDATA14_M0_AB	15.98	80.61		
15		RXDATA12_M0_AB	15.98	80.61		
16		RXDATA3_M0_AB	15.97	80.61		
17		RXDATA13_M0_AB	15.97	80.6		
18		RXVLD_M0_AB	15.97	80.58		
19		RXDATA1_M0_AB	15.97	80.58		
20		RXTRK_M0_AB	15.97	80.58		
21		RXDATA2_M0_AB	15.96	80.56		
22		RXDATA15_M0_AB	15.96	80.5		

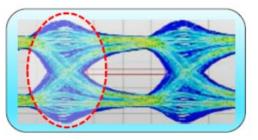
- 16 x 2 32 ports for Rx to Tx Data lanes
- 4 x 2 8 ports for Clock, TRK & VLD
- 7 x 2 14 ports for VDD Core Power.


cādence

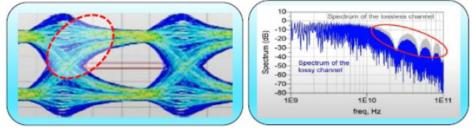

7 JAN. 28–30, 2025

#DesignCon/


M4 – M3 Metal Connections – Sample – CoWos_S


Die2Die Route - Samples

Simulate noiseless, jitter-less behavioral Tx and Rx models for ideal eye mask at receiver


Thick eye level – Near-end crosstalk – Traces are closer

Far-end crosstalk – closes Rx eye undershoot/overshoot

28

() informa markets

Simulate noiseless, jitter-less behavioral Tx and Rx models for ideal eye mask at receiver

Optimize trace spacing – to meet UCIe[™] VTF crosstalk specification, open the eye (meet eye mask spec)

#DesignCon

Die2Die Signal Integrity Checks

- Simulate noiseless, jitter-less behavioral Tx and Rx models for ideal eye mask compliance at receiver
 - To optimize the channel routes
- Channel crosstalk, jitter analysis
- Frequency-dependent loss (Tx and Rx channels)
- Analysis conditions:
 - Rx eye analysis for terminated/unterminated use cases SP
 - AP links unterminated
 - Analysis with 45 Ohms < Rx termination < 55 Ohms
 - $_{\circ}$ 0.4V < Tx swing < 0.85V
 - Support for all supported data rates
 - Support for IP Process corners
 - Forwarded Rx clock phases: (90, 270), (45, 135)
- Signal analysis methods
 - Tx eye diagram analysis
 - VTF loss (for channel)

JAN. 28–30, 2025

\ ///

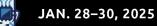
29

#DesignCon

() informa markets

UCle Toolkit Flow (Package Design, Analysis, Release)

UCle[™] Compliance Design Toolkit with a GUI front end for:


- Chiplet design import, placement
- Substrate/interposer PDK import
- Chiplet signal interconnects, package I/O connectivity
- Power domain design
- Lossless channel simulation for signal route strategies

3D – Extraction/S-parameter model generation VTF model creation Automated flow from routing>extraction>SI/PI Iterate fixes, extraction, and SI analysis for review Through meeting the Link requirement

Design/analysis interations to automate the toolkit

#DesignCon

Demo

Please visit the Cadence Booth #827 for a Live Demo of the UCIe Compliance Kit

JAN. 28–30, 2025

#DesignCon

